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Abstract. We study the number AN of sites that are accessible after N steps at most on 
clusters at the percolation threshold. On a Cayley tree A, is of order N 2  if the origin 
belongs to a large cluster, whereas its average over all clusters is of order N. This suggests 
that the intrinsic spreading dimension d, defined by A, - Na, is equal to two for fractal 
percolation clusters in space dimensions d 2 6 and depends on d for d < 6. For directed 
percolation clusters we argue that d is related to usual critical exponents by d = ( p  + y)/ U,,. 
Monte Carlo data that support this relation are presented in two dimensions. Analogous 
results are derived for lattice animals: d = 2 on the Cayley tree and d = 1/ uII for directed 
animals in any dimension. 

The problem of anomalous diffusion on percolation clusters has made considerable 
progress recently and has helped to clarify the various notions of dimension for fractal 
spaces (Alexander and Orbach 1982, Gefen et a1 1983, Rammal and Toulouse 1983). 
In particular the importance of intrinsic properties, i.e. that depend only on the structure 
of a fractal space and not on its embedding in a particular Euclidean space, has been 
stressed by Rammal et a1 (1984). One such intrinsic property is the average number 
A N  of distinct sites that are accessible from a given origin in at most N steps. N may 
be viewed as a chemical distance and A N  corresponds for instance to the number of 
units that have reacted in a model of chain polymerisation, or to the number pf infected 
individuals in the propagation of an epidemic. For Euclidean lattices A N  - N d  and an 
intrinsic dimension d can be defined similarly for a fractal space through the asymptotic 
behaviour of A N  for large N :  

AN-N’.  (1) 
We propose to call d the spreading dimension of the space (Toulouse 1984): it 

must in general be different from the fractal dimension d which describes the scaling 
of the mass M contained in a region of radius R ( M -  R d ) ,  since d is defined in terms 
of the Euclidean distance and is not an intrinsic quantity. A simple example is given 
by a random walk on a Euclidean lattice, which is well known to be a fractal object 
and which has d = 2, d = 1. Another intrinsic dimension is the spectral dimension d, 
which describes in particular the average number SN of distinct sites visited by a 
random walker after N steps on a fractal space (Rammal and Toulouse 1983): 

S, - N’/= (if a<2) .  (2) 
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It might be expected, for reasons of economy and simplicity, that (2= (2: this is not 
the case, as we show explicitly below for percolation clusters. The spreading dimension 
is therefore a new characteristic property of fractal spaces. 

It is found numerically that for the incipient infinite cluster at the percolation 
threshold the spectral dimension varies very little with the space dimension d ((2- $: 
Alexander and Orbach 1982, Angles d'Auriac et a1 1983), suggesting that it might 
even be a 'super universal' constant. It is then crucial to study the dependence of the 
spreading dimension on d :  if (2 were also constant, or nearly so, one might view 
percolation clusters in different d as essentially the same object embedded in different 
Euclidean spaces. 

This is in fact not the case. We show that (2=2 on the Cayley tree and since 
percolation on the tree generally corresponds to mean-field behaviour (Fisher and 
Essam 1961) we expect that (2 = 2 for d 2 d, = 6. As it is easy to see that (2s d holds 
in general, and d= 1.896. .  . for percolation in d = 2  (Stauffer 1981), (2 cannot be 
independent of d. Also, accurate Monte Carlo calculations (Herrmann 1984) indicate 
that (2 - 1.7 for d = 2. The calculations on the tree need some care: an average over 
all clusters gives A N  - N, but we argue that the relevant average for fractal properties 
has to be taken on large clusters and gives AN - N2. 

We also study the number of accessible sites on fully directed percolation clusters 
on cubic lattices. The problem is easier then since the number of new sites at every 
step is just the number of sites in the Nth  section along the preferred direction. A 
simple scaling argument is presented which relates (2 t'o known critical exponents of 
directed percolation. This argument predicts d = 2 for d = d; = 5 ,  in agreement with 
the expectation based on the Cayley tree result. Monte Carlo simulations on the 
directed square lattice are presented, they are in very good agreement with the scaling 
prediction. 

Analogous results may be obtained for lattice animals and we find that (2 = 2 for 
animals on the Cayley tree, both isotropic and directed. For directed animals a scaling 
argument leads to the simple result d = 1/  vII in any space dimension. 

It is well known (Fisher and Essam 1961, Nickel and Wilkinson 1983) that the 
average height (i.e. number of levels or generations) of a percolation cluster containing 
s sites, on a Cayley tree of coordination number 1 +a, is given by 

(n),-[7ra/2(a- 1)11'2 s1'2 (3) 

at the percolation threshold (probability of site occupancy p = pc = l/u). It is then 
surprising that the average number AN of sites that can be reached in at most N steps 
is only of order N, since on a tree there is a direct correspondence between steps and 
generations. One would rather expect AN to be of order N 2 ,  unless the probability 
distribution of accessible sites is very broad. 

Let us consider the generating function for the number firin of clusters of s sites 
which extend exactly up to level N, and contain k sites up to level n. We consider a 
rooted tree, where the root ( n  = 0 )  has only a neighbours. With the convention 
cG' = 8N,O8k,o,  one has: 

For percolation the variable y is related to the site occupation probability p by 
y = p (  1 -p)O-', while for lattice animals y is the fugacity. The generating function for 
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clusters extending at most up to level N is 
N 

M Y ,  x)  = c g x y ,  x).  
e =O 

Denoting the mean number of sites between levels 0 and n respectively a , (N)  for 
clusters extending exactly up to N and S, (N)  for clusters extending at most to N, 
these are given by: 

Now the generating functions (4) and ( 5 )  are independent of n for x = 1, and 
setting HN(y) = G ( y ,  1)  one can write the following recursion relations: 

From these relations and equation (6) one gets at the critical value y,= 
(a- 1y-1/au: 

S,(N) = a-l, 

S" ( N )  = ( 1 + H;I)[ 1 + aS,-1 ( N  - 1 )], 

a,  ( N )  = 1 + a[ ( HN - 1 ) s,- 1 ( N  - 1 ) - ( HN- 1 - 1 ) s,- 1 ( N  - 2)]/ ( HN - HN- 1). 

ao(N) = 1, 

For 1 << n << N one obtains the asymptotic behaviour: 

H N  -[@/(a-1)1[1-2/N(a- 1117 

Sn(N) - n / u ,  a,(N)-[(a-1)/20]n2. 

(9) 

These results show that if the average is performed over all clusters the number 
S,(N)  of accessible sites grows linearly with the number of steps n: this average is in 
fact dominated by small clusters that have no occupied site at level nt. On the contrary, 
when the average is performed only over large clusters the average number of accessible 
sites a , ( N )  grows like nz .  We give in figure l ( a )  the exact values of a , (N)  for N = lo5 
and a = 2 obtained via relations (9) at p = pc = 4. We noticed that such a large value 
of N was necessary to reach the asymptotic regime. 

The spreading dimension is therefore # = 2 for percolation on the Cayley tree and 
is larger than the spectral dimension d = $  (Angles d'Auriac et a1 1983). This result 
is expected to hold when mean-field theory is valid, i.e. for d 2 d, = 6. Since the fractal 
dimension d is a bound to a, one has d S  6= for d = 2: d is not independent of d 
and the fractal percolation clusters have a different intrinsic structure for different d, 
even though their spectral dimension appears to be =$ for all d. 

The above derivation also shows that identical results hold for lattice animals on 
the Cayley tree, since the critical value yc is the same for percolation and animals. 

We first remark that on a Cayley tree there is no distinction between ordinary and 
directed percolation. The difference only comes when one makes contact with 
Euclidean spaces: for isotropic percolation, a number m of generations corresponds 

t One can show that the number of accessible sites of clusters extending at least to level n grows like n2. 
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Figure 1. Mean total number of accessible sites after L steps, on percolation clusters at 
threshold (double logarithmic plots): ( a )  Exact results on the Cayley tree of coordination 
number 3, on clusters of length N = lo5 exactly. The full straight line has unit slope. ( b )  
Monte Carlo results for directed percolation on the square lattice. A, corresponds to an 
average over clusters extending at least up to L, A, (N)  to clusters extending at least up 
to N = 5000. Both quantities have the same asymptotic behaviour, within numerical 
accuracy. 

to a Euclidean distance m112, whereas for the directed case the distance is m along 
the preferred direction and m112 along the others. The two problems correspond to 
different (local) embeddings of the tree in Euclidean spaces of very high dimension, 
but the intrinsic properties like the spectral and spreading dimensions are identical. 
A direct consequence is that we expect d = 2  for directed percolation when d 2 5  
(Obukhov 1980). 

On a cubic lattice the accessible sites in a fully directed cluster ('wetted' sites) are 
just the sites belonging to that cluster in the Nth section from the origin, perpendicularly 
to the preferred direction. A scaling argument may then be given, above the percolation 
threshold: the wetted sites of the infinite cluster lie inside a cone of angle 

e - Le11 - ( P  - P A  y " - - y L >  (11) 

where eL and e,, are the associated critical exponents (Kinzel 1982). At a large distance 
L from the origin and not too close to the edges of the cluster, the density of wetted 
sites is given by the probability P( p )  - ( p - ~ , ) ~  that a site belong to the infinite cluster, 
so the average number ( B , ( p ) )  of wetted sites in a section is: 

( ~ ~ ( p ) ) -  [ ~ e ] ~ - l p ( p )  - L ~ - ~ ( P - P ~ ) ~ + ( ~ I I - ~ ~ ) ( ~ - ~ ) .  (12) 

For large clusters at the percolation threshold it is natural to assume that a similar 
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scaling relation holds, with replaced by L. This gives: - ~ [ ( d - l ) u , - B l / u i  

and 

a = 1 + [ ( d  - 1) - PI/ vlI = ( P  + y ) /  UIIy (13) 

using hyperscaling relations for directed systems in the last step. 
At the upper critical dimension d, = 5 ,  /3 = 1, vII = 1, U, = 4, so a = 2 and (15) agrees 

with the result on the Cayley tree. 
To check prediction (15) we have performed Monte Carlo calculations on the fully 

directed square lattice, at the percolation threshold pc = 0.705 (Kinzel 1982). A study 
of the distribution of cluster lengths showed that 30 percent of all clusters reached a 
length L = 3000, and that this length is well into the scaling region where the distribution 
decays very slowly with a power law. The results are presented in figure l(b):  they 
give the estimate 

a=1.46*0.03 

for clusters extending at least to N = 5000. This is to be compared with the prediction 
d = 1.47 from equation (13), using vII = 1.73, vL = 1.10 and p -0.28 (Kinzel 1982), 
and the agreement is satisfactory. 

An interesting remark is that if one sets formally Y I I  = v, in (15), the expression of 
d reduces to (d - p /  v), that is the fractal dimension d of the infinite cluster in standard 
percolation. This is puzzling at first since d is not an intrinsic dimension and one may 
wonder whether (15) is properly intrinsic. In fact, the introduction of a preferred 
direction along the diagonal of a cubic lattice defines a natural distance, in the sense 
that the distance between two connected points along a directed path is independent 
of the particular path followed between them and is invariant under distortions that 
preserve the local ordering of lattice sites. As defined above, vII corresponds to that 
natural distance and is indeed an intrinsic exponent. 

For directed lattice animals the reasoning is simpler still: the average length of a 
large animal containing s sites is proportional to ~ ’ 1 1 ,  but this is also the number L of 
steps necessary to reach the s sites, so we expect 

&-L~’~II, a = 11 yII. (14) 
Here the problem of small clusters does not arise. The upper critical dimension for 
directed animals is 4 = 5 (Day and Lubensky 1982): for d z 5 ,  vII = 4  and we expect 
the spreading dimension to remain constant, d = 2 .  This agrees with the mean-field 
value obtained above on the Cayley tree. We note that the generalisation of the fractal 
dimension d to directed objects is not unique (Nadal er al 1983), but that the spreading 
dimension is well defined and has a simple expression. 

We thank G Toulouse for initiating our interest in this problem and stimulating our 
work. To our knowledge, the first public discussion of this number of accessible sites 
on fractals took place at the Gaithersburg conference on ‘Fractals in Physical Sciences’ 
(November 1983) with Dr S Havlin presenting results pertaining to percolation clusters 
in dimension two and Dr R Rammal reporting on similar calculations for two- 
dimensional Sierpinski gaskets (unpublished). We are also grateful to Dr H J Herrmann 
for communicating his numerical results prior to publication. One of us (HM) thanks 
the CONICET (Republic of Argentina) for its support while this work was performed. 
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